Power-law distribution in budget changes: macroscopic and microscopic modeling strategies

Gábor Borgulya MD Msc

Computational Neuroscience Group, KFKI RMKI, Hungarian Academy of Science, Budapest, Hungary

Center for Complex Systems Studies, Kalamazoo College
Observations of the political scientists

About power-law and mechanisms behind

Why is there power-law in budget changes?

Modeling framework

Macroscopic model

Microscopic modeling
Economic growth

GDP in the USA

http://www.econdash.com/images/gdp_us_graph.gif
US real outlays, logarithmic scale

Jones et al, 2007: A General Empirical Law of Public Budgets: A Comparative Analysis. Figure 2b.
US real outlays, percentage change

Jones et al, 2007: A General Empirical Law of Public Budgets: A Comparative Analysis. Figure 2a.
US total outlays, histogram

- leptokurtic
- asymmetric
- bounded
- peak close to zero

Jones et al, 2007: A General Empirical Law of Public Budgets: A Comparative Analysis. Figure 3a.
Kurtosis, platy- meso- leptokurtic

http://upload.wikimedia.org/wikipedia/commons/e/e6/Standard_symmetric_pdf.png
Kurtosis, platy- meso- leptocurtic

Plot of several symmetric unimodal probability densities with unit variance

From highest to lowest peak:

- red, kurtosis 3, Laplace (D)ouble exponential distribution
- orange, kurtosis 2, hyperbolic (S)ecant distribution
- green, kurtosis 1.2, (L)ogistic distribution
- black, kurtosis 0, (N)ormal distribution
- cyan, kurtosis $-0.593762\ldots$, raised (C)osine distribution
- blue, kurtosis -1, (W)igner semicircle distribution
- magenta, kurtosis -1.2, (U)niform distribution

http://upload.wikimedia.org/wikipedia/commons/e/e6/Standard_symmetric_pdf.png
Real US GDP quarterly change

- slightly leptokurtic
- slightly asymmetric
- peak near 0.15
 (US growth 2.20)

What is the source of kurtosis?

- **GDP**: More or less stable growth
- **Budgets**: Punctuated equilibrium, “bursts of frenetic activity” (Jones)
Identified mechanisms: friction

- Limited attention of political institutions
- Friction by collective decision rules, resistance to change
- Error accumulation or strong signals
- Prioritized preferences, re-prioritize
- Urgency causes collective attention
- “The contagion of urgency overcomes the friction of order” (Jones)
US total outlays, log-log plot

Why linear?
Our goal is to explain.

Jones et al, 2007: A General Empirical Law of Public Budgets: A Comparative Analysis. Figure 3b.
Pareto distribution

- Power function: \(y = a \cdot x^k \)
- Probability density distribution (PDF) is power function
- Linear in log-log plot:
 \[
 y = a \cdot x^k \\
 \ln y = \ln a + k \cdot \ln x \\
 Y = A + k \cdot X
 \]

Exponential growth with exp kill

- $y = a \cdot x^k$, $k \sim \exp(b)$
- Many plates with many bulbs
- Power-law distribution
Reciprocal of quantities

- y has a distribution that passes through zero
- \(x = 1 / y \)
- x has a distribution with a power law tail
- We haven't found any microscopic or macroscopic analogy in political decisions.
Random walks

- 1D random walk
- first return time

Newman, 2006, Figure 9
The Yule process

- Speciation: splitting of one species into two
- Once every m speciation events sufficiently different to be considered a new genus (Newman)
- Number of species in a genus: power law
- Gibrat principle: “rich get richer”

http://www.mun.ca/biology/scarr/Stanley_Speciation_A_&_B.gif
Criticality

- $p=0.3, p=0.5927..., p=0.9$
- clusters – spanning cluster
- critical point, percolation
- power-law at the critical point
- budget power-law, because of power-law

Newman, 2006, Figures 11 and 12
Self-organized criticality

- Forest fires
- Sandpile, avalanche
- Earthquakes

Newman, 2006, Figure 13.
http://www.geo.lsa.umich.edu/~ruff/Geo105.W97/SOC/SOCeq.html
Highly optimized tolerance

- Forest fire, but trees deliberately planted to optimize the amount of lumber, random fires
- Approximate power-law
W. Reed proved that geometric Brownian motion leads to double Pareto distribution

\[dX = \mu X \, dt + \sigma X \, dw \]

"simple, plausible explanation which can explain many examples in economics ... and other areas."
Classification of mechanisms

- Continuous process – many independent processes
- Macroscopic - microscopic mechanisms
Model framework

- Political system gets inputs, signal S
- Numerical budget decision is its response, R
- Roaming in the S-R space, stochastic
 \[R_t = r(S_t, S_{t-1}, S_{t-2}, \ldots R_{t-1}, R_{t-2}, \ldots, e_r) \]
 \[S_t = s(S_{t-1}, S_{t-2}, \ldots R_{t-1}, R_{t-2}, \ldots, e_s) \]
- A very simple model may give explanation
 \[R_t = f(S_t) \]
 \[S_t = s(e_s) \]
Combination of exponentials budget model

- \[R = a \cdot x^S, \quad S \sim \exp(b), \quad 0 < x < 1 \]

- Direct explanation: "He gives twice who gives quickly"
"The contagion of urgency overcomes the friction of order"

- General explanation, allows for several microscopic mechanisms
Future microscopic model

- Phenomenology came first
- Waiting times in political decisions
- Data analysis of various budget components, proposition re-entry into parliament, timings of hearings
- Various microscopic power-law mechanisms may be behind the macroscopic double exp.
Other directions to consider

- Lognormal distribution
- Approximate power-law distributions
- Highly optimized tolerance
Summary

- Studied budget changes
- Studied power-law mechanisms
- Model frame
- General, phenomenological, macroscopic model
- Towards microscopic modeling