Economy from the Perspective of Complex Systems

Péter Érdi
Center for Complex Systems Studies
Kalamazoo College, Michigan
and
Dept. Biophysics
KFKI Research Institute for Particle and Nuclear Physics
of the Hungarian Academy of Sciences, Budapest
CONTENT

• THE CENTURY OF COMPLEXITY?

 COMPLEXITY: WHAT WE ARE TALKING ABOUT?

• ECONOMICS AND COMPLEXITY: THE PROMISE

• CONTROLLING CHAOS IN ECONOMICAL MODELS

• ECONOPHYSICS

• MINORITY GAMES

• FROM SOCIAL NETWORKS TO ECONOMIC NETWORKS

• AGENT-BASED MODEL OF THE TIMING OF RETIREMENT
THE CENTURY OF COMPLEXITY?

I think the next century will be the century of complexity.”
Stephen Hawking (Complexity Digest 2001.10 March-05-2001)

20th century sciences: mechanistic reductionism
Understanding any system: study of the whole by reduction to its parts.
Knowledge of the parts was thought to yield full understanding of the whole.

Science of Complexity: study of organization principles
Holistic studies: the properties and behavior of *intact*
system + environment
Welcome to the

Center for Complex Systems Studies
COMPLEXITY: WHAT WE ARE TALKING ABOUT?

Temporal complexity

Chaotic patterns

Lorenz:
unpredictability

Lorenz attractor
Spatial complexity

Schelling’s segregation model

Ghettos emerge from a simple neighborhood rule
Spatial complexity

Distribution of opinions

2 possible opinions

10 possible opinions

30 possible opinions
Spatiotemporal complexity

People: an excitable media performing the Mexican wave

The Mexican wave (or La Ola), sweeping through a crowd of spectators. A few dozen fans leap up with their arms raised and then sit down as people in the next section jump to their feet to repeat and propagate the motion.
Spatiotemporal complexity

Statistical theory of Collective (physical-chemical) systems \(\rightarrow\) to human behavior

States: excitable - standing - waving - passive (refractory)

Model: the weighted concentration of active people within a given radius around a person is above the person’s threshold, then that person becomes activated. Activation decrease exponentially with distance and change linearly with the cosine of the direction, so that people on the left of an individual have an influence that is stronger than those on the right. The direction of the wave’s motion is determined by this anisotropy because of the breakdown of spontaneous symmetry in the early stages as a result of anticipation and anisotropic perception (as most people are right-handed).

Conditions of triggering a wave; characteristic size and time.
Organizational complexity

Food web

Social network
ECONOMICS AND COMPLEXITY:
THE PROMISE

Why a New Approach is Needed?

● *Neoclassical economics*
 * Behavioral model for people:
 : Fully-informed
 : Rational
 * People interact only indirectly with one another (through markets)
 * Focus on equilibrium outcomes

● *Complexity approach*
 * People are adaptive
 * They interact directly with one another
 * Focus on dynamics
 * Methodology: equation vs. agent-based modeling?

W. Brian Arthur
http://www.santafe.edu/wba/Papers/Papers.html
CONTROLLING CHAOS IN ECONOMICAL MODELS

J.A. Holyst and K. Urbanowicz:
Chaos in a simple micro-economical model of two competing firms

Two firms X and Y competing on the same market of goods. The firms perform active investment strategies, i.e., their temporary investments depend on their relative position on the market.
The strategies are asymmetric:
firm X invests more when it has an advantage over the firm Y;
firm Y invests more if it is in a disadvantageous position compared to the firm X

+ chaos may occur
+ chaos can be suppressed by changing the investment sizes
Chaos

3-periodicity
ECONOPHYSICS

Econophysics tries to apply physics methods to theoretical economics with the optimism of the physicists
http://www.unifr.ch/econophysics/

- deals with real market data

derive empirical laws

- construct phenomenological theories

obvious drawback: interacting units in economics are 'thinking agents' with adaptive strategies;
and not 'mindless' particles obeying simple microscopic laws
MINORITY GAME

A minority game (MG) is a repeated game where \(N \) (odd) players have to choose one out of two alternatives (say A and B) at each time step. Those who happen to be in the minority win. Although being rather simple at first glance this game is subtle in the sense that if all players analyze the situation in the same way, they all will choose the same alternative and will lose. Therefore, players have to be HETEROGENOUS. Moreover, there is a frustration since not all the players can win at the same time: this is an essential mechanism for modelling competition.

MG is an abstraction of the famous El-Farol’s bar problem (Brian W. Arthur, Am. Econ. Assoc. Papers and Proc 84, 406, (1994)): 100 people would like to go to a bar (El Farol) which is too crowded if there are more than 60 people.
Minority game

MG is simply a game with artificial agents with partial information and bounded rationality. (Herbert Simon is cited very rarely in the econophysics literature.) Decisions: based on the knowledge of the M last winning alternatives, called histories. Take all the histories and fix a choice (A or B) for each of them: you get a strategy, which is like a theory of the world.

Inductive strategis; mental schemes, hypotheses or behavioral rules

Bar Attendance in the first 100 Weeks

MG: very crude model of financial markets: minority mechanism is found in markets.

Stock market as a complex adaptive system
Hierarchically Organized Minority Games

The individual MGs will form a group, and individual players within each MG will make decisions which depend on the average behavior of their own and other MGs. Calculations show that under certain conditions the elements of the individual MGs 'know' much more about each other than one would expect.
FROM SOCIAL NETWORKS TO ECONOMIC NETWORKS

• Acquaintanceship Networks
 It took a median of 5 intermediate friends to go from the starter to the target person.
 What is the probability that any two people, selected arbitrarily from a large population, will know each other?
 What is the length of the shortest chain of acquaintances between two people chosen at random?

• Hollywood Universe

 Find the shortest path from any actor to Kevin Bacon, using the association rule.

 Unlike society in general, film actor associations are well documented.

• Collaborative graphs

Paul Erdős
(1913-1996)
FROM SOCIAL NETWORKS TO ECONOMIC NETWORKS

The Erdös Number Project
http://www.oakland.edu/ grossman/erdoshp.html

\begin{verbatim}
E. n 0 1 person
E. n 1 502 people
E. n 2 5713 people
E. n 3 26422 people
E. n 4 62136 people
E. n 5 66158 people
E. n 6 32280 people
E. n 7 10431 people
E. n 8 3214 people
E. n 9 953 people
E. n 10 262 people
E. n 11 94 people
E. n 12 23 people
E. n 13 42 people
E. n 14 7 people
E. n 15 1 person
E. n 16 0 people
\end{verbatim}

Average Erdős number: 4.69
FROM SOCIAL NETWORKS TO ECONOMIC NETWORKS

REGULAR, RANDOM and REAL WORLD GRAPHS

lattice-like (several neighbors)
regular + random effects
random

small world graphs
FROM SOCIAL NETWORKS TO ECONOMIC NETWORKS

Power-law distribution - Scale-free distribution

(Success story on the topology of WWW: Barabasi)

random evolution "preferential attachment"
FROM SOCIAL NETWORKS TO ECONOMIC NETWORKS

OECD statistics of trade in services broken down by partner country. It is a response to a growing interest in trade in services partly due to their increasing importance in economic production and partly driven by increased data needs to inform trade negotiations.

http://www.oecd.org/pdf/M00032000/M00032981.pdf
FROM SOCIAL NETWORKS TO ECONOMIC NETWORKS

Paper of the month in Econophysics:
M. Angeles Serrano, Marian Boguna: Topology of the World Trade Web
http://xxx.lanl.gov/pdf/cond-mat/0301015/

Analysis of International Trade Center:
http://www.intracen.org/menus/countries.htm
import - export list; the forty more important exchanged merchandises (2000)
vertices: countries (179) directed links: import/export relations (7510)
average degree: 30.9

$k > 20$: power law distribution
else: Poisson distribution ("random evolution")

Message: Developmental mechanisms are different !!!
AGENT-BASED MODEL OF THE TIMING OF RETIREMENT

Axtell and Epstein (The Brookings Institution):
Coordination in Transient Social Networks: An Agent-Based Computational Model of the Timing of Retirement

1961: minimum age at which workers could claim social security benefit: 65 -> 62
fully-informed rational behavior: instantaneous shift
Agents-based simulation: different strategies:
(Game theory + social network theory)
‘rationals,” ”randoms,” and ”imitators.”
(Heterogenous) Imitators behaviour <- their social network

For a given fraction of rationals:
transition time decreases as the proportion of randoms increase ...

similar simulations ...